Dissipation in ultrahigh quality factor SiN membrane resonators.
نویسندگان
چکیده
We study the mechanical properties of stoichiometric SiN resonators through a combination of spectroscopic and interferometric imaging techniques. At room temperature, we demonstrate ultrahigh quality factors of 5×107 and a f×Q product of 1×1014 Hz. To our knowledge, these correspond to the largest values yet reported for mesoscopic flexural resonators. Through a comprehensive study of the limiting dissipation mechanisms as a function of resonator and substrate geometry, we identify radiation loss through the supporting substrate as the dominant loss process. In addition to pointing the way towards higher quality factors through optimized substrate designs, our work realizes an enabling platform for the observation and control of quantum behavior in a macroscopic mechanical system.
منابع مشابه
Evidence of Surface Loss as Ubiquitous Limiting Damping Mechanism in SiN Micro- and Nanomechanical Resonators.
Silicon nitride (SiN) micro- and nanomechanical resonators have attracted a lot of attention in various research fields due to their exceptionally high quality factors (Qs). Despite their popularity, the origin of the limiting loss mechanisms in these structures has remained controversial. In this Letter we propose an analytical model combining acoustic radiation loss with intrinsic loss. The m...
متن کاملInvestigation of Thermoelastic Damping in the Longitudinal Vibration of a Micro Beam
In the design of high Quality factor (Q) micro or nano beam resonators, different dissipation mechanisms may have damaging effects on the quality factor. One of the major dissipation mechanisms is the thermoelastic damping (TED) that needs an accurate consideration for prediction. In this paper, thermoelastic damping of the longitudinal vibration of a homogeneous micro beam with both ends clamp...
متن کاملHigh, size-dependent quality factor in an array of graphene mechanical resonators.
Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical vapor deposition. In addition to highly...
متن کاملEnergy Dissipation in Graphene Mechanical Resonators with and without Free Edges
Graphene-based nanoelectromechanical systems (NEMS) have high future potential to realize sensitive mass and force sensors owing to graphene’s low mass density and exceptional mechanical properties. One of the important remaining issues in this field is how to achieve mechanical resonators with a high quality factor (Q). Energy dissipation in resonators decreases Q, and suppressing it is the ke...
متن کاملEliminating anchor loss in optomechanical resonators using elastic wave interference
Articles you may be interested in Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield Appl. Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere Appl. Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator J.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 12 شماره
صفحات -
تاریخ انتشار 2014